If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-12x-30=0
a = 5; b = -12; c = -30;
Δ = b2-4ac
Δ = -122-4·5·(-30)
Δ = 744
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{744}=\sqrt{4*186}=\sqrt{4}*\sqrt{186}=2\sqrt{186}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{186}}{2*5}=\frac{12-2\sqrt{186}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{186}}{2*5}=\frac{12+2\sqrt{186}}{10} $
| (x+1)(x+2)=9 | | (x+.5)(x+1)=9 | | (9x+7^6)/60^3)=99 | | 23x+120=180 | | 23x+120=90 | | -16t^2+23t+6=14 | | 6x+5=6x+x-4 | | 7x-2-4x=3x+8 | | 45x+120=180 | | 45x+120=90 | | 13^-3x=8^-x-8 | | 131+x=180 | | 3x-29=2x+21 | | 4x-29=2x+21 | | -x+17=3x-19+5x | | 20x+16=-11+17x | | 24=24t-4.9t^2 | | 18+13x=14x | | 1+x+10x=10x+8 | | -6/7x+39=-27 | | 10x-10=5x+8x+8 | | 1/8x+19=5/8x-21 | | -3x=10+7x | | 3.2^x=10995.1163 | | 3x+5+(-2x+4)-180=0 | | 1-y/2-2(y-3/2)=0 | | 3x+8/5=16/5-x | | -7-7x=3-5x | | -1.9x-1=-1.7x+2 | | 24y-32y-14=8 | | -3x+7=-7-5x | | 3.2^(x-3)=3.2^5 |